
French Forest Sector Model (FFSM++)

Laboratoire d'Economie Forestière - LEF - Nancy, France

FFSM++ development instructions

The overall FFSM++ development environment requires a little bit of efforts in its start-up, due to the many tools used, but on the other hand once all these tools has been set-up it results

in a very powerful one.

Setting up the Development Environment

The FFSM development itself is done using Qt Creator, a multi-platform Integrated Development Environment (IDE) based on the popular Qt libraries.

This section contains detailed instructions on how to get and install the IDE and all the necessary prerequisites, in both Windows or Linux environment. For the former, third party libraries

(IPOPT, Adol-C, ColPack) are already available within the FFSM source code repository, so the instruction for their installation refers only to the case that a new version of them is

released and the user want to upgrade to it.

Linux (Ubuntu 16.04)

See older revisions of this page for older Ubuntu systems and for tips to solving some errors no longer occurring in Ubuntu 16.10.

The following packages and their prerequisites should be installed:

sudo apt-get install qt5-default qt5-qmake qtcreator libatlas-base-dev libatlas-dev gfortran zlib1g-dev
Optional, for the qtcreator helper:
sudo apt-get install libgstreamer0.10-0 libgstreamer0.10-dev libgstreamer-plugins-base0.10-0

Ipopt

Downolad Ipopt (Ipopt-3.XX.X.tgz) from http://www.coin-or.org/download/source/Ipopt/ [http://www.coin-or.org/download/source/Ipopt/] and extract it to somewhere where there is no

spaces in the path.

In the extracted directory move to ThirdParty and for {Metis|Mumps|ASL} go in their subfolder and run “./get.{Metis|Mumps|ASL}”. This will download and extract them to a

place that the ipopt configure will automatically find them.

For using the HSL linear solver (optional, as it requires a free academic licence, but way faster than MUMS) go to http://www.hsl.rl.ac.uk/ipopt/ [http://www.hsl.rl.ac.uk/ipopt/] and

download “Coin-HSL Full (Stable)”, “Source”. Wait for the email with the link and then unzip, rename and move the archive as to be ThirdParty/HSL/coinhsl

Create a build directory, move there and from there type:

../configure --with-blas="-L/usr/lib/atlas-base/atlas -lblas" --with-lapack="-L/usr/lib/atlas-base/atlas -llapack" --prefix="/usr" 'CXXFLAGS=-O3' 'CFLAGS=-O3'
make
sudo make install

ColPack

Download ColPack >= 1.0.8 (ColPack-1.X.X.tar.gz) from http://www.cscapes.org/download/ColPack/ [http://www.cscapes.org/download/ColPack/] and unzip it.

Type:

./configure --prefix=/usr 'CXXFLAGS=-O3' 'CFLAGS=-O3'
make
sudo make install

Notes: The web site cscapes seems to no longer exists. Here is a copy of the last available ColPack library, the 1.0.9.

ADOL-C

Download ADOL-C (ADOL-C-2.X.X.tgz) from http://www.coin-or.org/download/source/ADOL-C/ [http://www.coin-or.org/download/source/ADOL-C/]

Type:

./configure --enable-docexa --enable-addexa --enable-sparse --prefix=/usr 'CXXFLAGS=-O3' 'CFLAGS=-O3'
make
sudo make install

On 64 bits Linux, symlink all libadoc.* libraries from /usr/lib64 to /usr/lib:

cd /usr/lib
sudo ln -s ../lib64/libadolc.la .
sudo ln -s ../lib64/libadolc.so .
sudo ln -s ../lib64/libadolc.so.2 .
sudo ln -s ../lib64/libadolc.so.2.1.0 .

Windows (XP or 7)

MinGW

MinGW is the windows version of the g++ compiler, together with a minimal unix-style environment that allow to compile unix programs natively in windows.

Please follow the instructions below:

Download the MinGW environment installer (http://sourceforge.net/projects/mingw/files/Installer/mingw-get-inst/mingw-get-inst-201XXXXX.exe [http://sourceforge.net/projects

/mingw/files/Installer/mingw-get-inst/mingw-get-inst-201XXXXX.exe])

Launch the installer

Select “Download latest repository catalogue”

Select C:\MinGW as folder. Do not change this setting !!

Select the following components:

C compiler;

C++ Compiler;

Fortran Compiler;

MinGW Developer Toolkit

Open a MinGW shell: START→All programs→ MinGW→ MinGW shell

Type “mingw-get install msys-wget”

From the MinGW shell you'll find the hard disk content under /c

1

Qt and Qt Creator

From “http://qt-project.org/downloads [http://qt-project.org/downloads]” download:

Qt libraries 5.X.X for Windows (MinGW 4.X)

Qt Creator 2.X.0 for Windows

1.

Install the software

Install the Qt libraries with default options (leave C:\MinGW when asked where to look for it)

Install the Qt Creator with default options

2.

Install the python-enabled debugger (in order to watch STL containers)

Download the GDB for your environment from http://origin.releases.qt-project.org/gdb/ [http://origin.releases.qt-project.org/gdb/]

Point qtcreator to use it from the options→kits page

3.

Configure the software

On Qt Creator, go to “Tools→Options→Build & Run”.

On the tab “Tool chain” click “Add→MinGW” and feel the field “Compiler path” with “C:\MinGW\bin\g++.exe” and the debugger path with “C:\MinGW\bin\gdb.exe”

On the tab “Qt Version” click “Add” and browse for the qmake.exe file (that should be in “C:\Qt\5.X.X\bin\qmake.exe”)

4.

Alternative version for installing the Qt libraries from source

Install first MinGW as directed

Download qt-everywhere-opensource-src-5.X.X.tar.gz and unzip it to C:\Qt\5.X.X

Add C:\Qt\5.X.X\bin to PATH in windows

Run the following script from the MinGW shell

cd /c/Qt/5.x.x
configure.exe -qt-zlib -opensource -release -platform win32-g++
mingw32-make

Notes: These instructions were written for the now obsolete Qt4. We didn't tested them with the newer Qt5 that are required by the model, but we think the procedure should be similar. Qt

4.8.3 had a know bug that required adding QMAKE_RCC = $$[QT_INSTALL_BINS]$${DIR_SEPARATOR}rcc.exe after the QMAKE_IDC line in C:\Qt\4.8.3\mkspecs\win32-

g++\qmake.conf

Update 20150929: We didn't yet tested Qt5, as unfortunately as they are now shipped together with MinGW, this would means to update also the windows MinGW compiler. In turn this

mean to have to recompile all the ThirdParty libraries. We stuck with the Qt4.8/MinGW 4.6.2 for now.

To allow compilation of the code with Qt4.8 instead of Qt5, just comment “#include <QtWidgets>” and decomment “#include <QtGui>” on top of InputNode.cpp, MapBox.cpp,

ScenarioSelectionWidget.cpp and MainWindow.cpp. On this last file also comment '#include “QApplication”'.

To use Qt5 attenction that most likely you will have to give the full path of the external libraries in the project file and you'll have to compile zlib by yourself (as it's no longer shipped with

Qt5).

Ipopt (optional)

This step is not required, as a windows 32 version of IPOPT is already shipped with FFSM, but if you want to build your own version of ipopt, e.g. because a new version is available or

you want to use a faster linear solver (and you have an academic licence) you can follow these instructions.

Downolad Ipopt Ipopt-3.XX.X.tgz from http://www.coin-or.org/download/source/Ipopt/ [http://www.coin-or.org/download/source/Ipopt/] and extract it to somewhere where there is no

spaces in the path (e.g. in Win7 the standard “Download” folder is fine, in WinXP it isn't.). In the remaining of this tutorial we'll assume that the Ipopt folder is C:\ipopt.

In the Ipopt extracted folder create a “build” folder, so that you end up having C:\ipopt\build.

Open the MinGW shell and type “cd /c/ipopt/ThirdParty”.

For each of {Blas|Lapack|Metis|Mumps} go in their sub-folder and run from there “./get.{Metis|Mumps}”. This will download and extract them to a place that the ipopt configure

will find them.

For using the HSL linear solver (optional, as it requires a free academic licence, but way faster than MUMS) download ma27-1.0.0.tar.gz, mc19-1.0.0.tar.gz and ma57-3.7.0.tar.gz.

Rename ma27d.f and mc19d.f in ma27ad.f and mc19ad.f and place them in ThirdParty/HSL. For ma57, create a file ma57ad.f in the same folder and merge into it all the fortran

source code coming with the library (excluding fakemetis.f)

Type, in the sequence:

cd /c/ipopt/
mkdir build
cd build
../configure
make
make install

Replace the dll and header files coming with git in win32 ([FFSM_FOLDER]\src\ThirdParty\ win32) from the equivalent ones in C:\ipopt\build\include and C:\ipopt\build\lib

COLPACK (optional)

Download ColPack >= 1.0.8 (ColPack-1.X.X.tar.gz) from http://www.cscapes.org/download/ColPack/ [http://www.cscapes.org/download/ColPack/] and unzip it.

You can choose to have it statically compiled to ADOL-C (better I guess) or dynamically compiled. Performances are actually very similar, with a little improvement for the static

linking.

METHOD 1 - STATIC LINKING (DEFAULT)

Type:

./configure –prefix=/usr
make
g++ -shared -Wl,-soname,libColPack.so -o libColPack.so <list of object files>

METHOD 2 - DYNAMIC LINKING

From the MinGw prompt, follow the method suggested here to compile and install ColPack, adding –prefix=/usr to configure: http://stackoverflow.com/questions/12163406/

[http://stackoverflow.com/questions/12163406/]

Copy libColPack-0.dll to the root of ffsm and to [FFSM_ROOT]\src\ThirdParty\win32\lib\

Notes: If linking problems arise with method 2, copy also all the other libColPack.* libraries to [FFSM_ROOT]\src\ThirdParty\win32\lib\. ColPack compile but doesn't work with

ADOL-C in MinGW g++ 4.7, so for now it must be retained MinGW g++ 4.6

ADOL-C (optional)

Download ADOL-C (ADOL-C-2.X.X.tgz) from http://www.coin-or.org/download/source/ADOL-C/ [http://www.coin-or.org/download/source/ADOL-C/] end extract it to C.

Comment lines 71 to74 and 500 to 510 in file [ADOL-C]\ADOL-C\src\adouble.h and [ADOL-C]\ADOL-C\adouble.h (these lines refer to a local definition of fmix() and fmax()

that conflicts with that defined by MinGw).

Open the MinGW shell and type the following commands:

cd /c/ADOL-C
cd ADOL-C
ln -s src adolc
cd ..

IF YOU FOLLOWED METHOD 1 IN COLPACK (STATIC LINKING):

2

Replace all the configure scripts from ADOL-C 2.3.0 with those of ADOL-C 2.2.1. Static linking will not work with the configure system provided in adol-c 2.3.0.

Create the following directories under the ADOL-C root:

[ADOL-C ROOT]\ThirdParty\ColPack\build\include

[ADOL-C ROOT]\ThirdParty\ColPack\build\include\ColPack –>needed in make phase!

[ADOL-C ROOT]\ThirdParty\ColPack\build\lib

Copy there the libs and includes obtained from the ColPack compilation. The exact position (e.g. the includes under \include\ColPack or directly under \include) depends on

the adol-c versions. Copying them in several positions doesn't hurt as it seems any how that the configure and the make looks in different places.

Type:

./configure --enable-docexa --enable-addexa --enable-sparse –prefix=/usr
make

IF YOU FOLLOWED METHOD 2 IN COLPACK (DYNAMIC LINKING):

Type:

./configure --enable-docexa --enable-addexa --enable-sparse --prefix=/usr –with-colpack=/usr
make

Replace the dll and header files coming with git in win32 from the equivalent ones from C:\MinGW\msys\1.0\include\adolc, C:\MinGW\msys\1.0\lib and C:\MinGW\msys\1.0\bin

(libadolc-1.dll).

Copy libadolc-1.dll also to the root of Ffsm.

Notes: If you have an error about libtool version mismatch run “autoreconf –force –install” before configure (http://stackoverflow.com/questions/3096989/libtool-version-mismatch-error

[http://stackoverflow.com/questions/3096989/libtool-version-mismatch-error]). Tplease consider that the ln -s command in preparing the ADOL-C compilation actually copys, not links, the two

folders.

Getting the source code

Download FFSM++

Type:

git clone https://github.com/LEFNancy/ffsm_pp.git

Note: Git repository is currently set private untill we remove from it input data for which we do not have the copyright and hence we can't publicily release.

Developing FFSM

Once the development environment has been set up it is possible to inspect and change the source code of FFSM using the Qt Creator IDE:

A guide to Qt Creator is out of this paper scope, as abundant documentation can be retrieved from either official and unofficial sources. Hence, we describe here just the very basic

operations required to modify and compile the code.

To start the IDE click on the file ffsm.pro. The first time Qt Creator will ask the version of Qt to be used for the project, where the default choices can be accepted.

A few tips (see screenshots):

In the Configure project option, choose the dot (“.”) for the Debug and release directory1.

In the build and run be sure the default gdb is selected as debugger (it wasn't in a clean install on my machine)2.

In order to watch STL containers while degugging, in the debug options uncheck the “Load system GDB pretty printers”3.

The icons on the bottom of the left panel allow to perform the main actions at the project level: to compile it (hammer icon), debug it (bug icon) and run it (play icon).

3

The overlying switch allows to select the current mode between release and debug: the release mode produces a smaller and optimized program that run faster but doesn't allow to keep

track of what's happening in the model. The debug mode instead, while running slower, allows to set breakpoints in the code (the red circles) where the execution of the model is halted

and the modeller can inspect the situation of any variable within the current scope (right panel).

In the debug mode (to which the screenshot refers) the modeller can also inspect the whole stack leading to that specific point, that is, the list of function calls made up to the point, and can

decide where to set the next breakpoint: to the next manually set breakpoint, to the next line, to the first line of the next called function or to the next line of the calling function (therefore

executing all the remaining code of the current function until its return).

While the application is debugged it runs as a normal program on its own windows if in GUI mode or under the panel “Application Output” if in console mode.

Deploying FFSM

Optionally FFSM can be packaged in an easy to be used self-installer for Windows.

It is enough to download and install the Nullsoft Install System and, from the windows explorer, right click on the provided windowsInstallerScript.nsi file and select “Compile NSIS

Script”. This is a very simple script that can be edited where appropriate with any text-editor.

en/dev/development.txt · Last modified: 2016/09/08 15:05 by Antonello Lobianco

4

